ホーム | 講義一覧 | 日本語 | English |
最終更新日: 2009年9月16日
本講義は東北大学グローバルCOE「物質階層を紡ぐ科学フロンティアの新展開」の融合教育科目です.
◎授業の目的と概要: 時間変数と空間変数に依存する函数に対する偏微分方程式は,初期値と境界値を与えて解く問題として 定式化されるものが多い.通常,空間変数はある固定された領域を動く.しかし,氷と水が混在し,氷が 融けて水になる場合には,氷の占める領域と水の占める領域が時々刻々変化し,その境界は予め指定する ことができるものではなく,求めるべき未知の量である.このような問題を自由境界問題と呼ぶ. 本講義は,熱伝導方程式に対する自由境界問題の解の存在,一意性,漸近挙動などに関する古典的理論 を特にステファン問題の場合に理解することを主な目的とし,さらに自由境界の振る舞いを具体的に調べ る上で重要になる近似解法や数値解法についても学ぶ. ◎学習の到達目標: *ステファン問題の解の構成法を理解する. *位相場モデルによる近似の仕組みを理解する. ◎授業の内容・方法と進度予定: 1.ステファン問題の古典解 1.1. 二階放物型線型偏微分方程式の解の基本性質(1回) 1.2. 一相ステファン問題の近似解の構成(2回) 1.3. 一相ステファン問題の古典解の存在(2回) 1.4. 漸近挙動(1回) 2.変分不等式(4回) 2.1. 変分不等式による一相ステファン問題の解法 2.2. ステファン問題の自由境界のいくつかの性質 3.位相場モデルによる近似(3回) 4.数値解法(1回) 教科書および参考書: 教科書は用いない.参考書として,以下のものを挙げておく.他にも良書は多い.講義中随時紹介する. [1] Avener Friedman, "Variational Principles and Free-Boundary Problems", John Wiley and Sons, New York, 1982. [2] 河原田秀夫, 「自由境界問題」, 東京大学出版会,1989. [3] David Kinderlehrer and Guido Stampacchia, "An Introduction to Variational Inequalities and Their Applications", Academic Press, New York, 1980. [4] Anvarbek M. Meirmanov, "The Stefan Problem", Walter de Gruyter, Berlin/New York, 1992. 成績評価の方法: 課題に対するレポートにより評価する. その他: *講義終了後に質問を受け付ける時間帯を設ける.
to top of the pageIntroduction to Free Boundary Problems for Parabolic Partial Differential Equations
Hours: from 10:30 to 12:10 on every Friday From October 2, 2009 to January 22, 2010 Classroom: RM 801 of Godoto Building Synopsis: Partial differential equations for functions of the time variable and spatial variables are considered under the initial condition and the boundary conditions. Usually the spatial variables are in a fixed domain. However, when we consider the mixture of ice and water, the domain occupied by the ice changes with time since the ice melt into water and we cannot specify the boundary of the two domains beforehand. In this case the boundary between ice and water is an unknown. Such a problem is called a free boundary problem. In these series of lectures, we learn about the existence, uniqueness and asymptotic behavior of solutions of the free boundary problem for the equation of the heat conduction, in particular, the Stefan problem. We learn also about the phase-field model which is an approximation method suitable for numerical simulations. Goal: * To learn basic methods to construct a classical solution of the Stefan problem. * To understand the relationship between free boundary problems and phase-field models. Contents: 1. Classical solutions of the Stefan problem 1.1. Fundamental properties of solutions of parabolic partial differential equations of second order (one lecture) 1.2. Construction of approximate solutions of the one-phase Stefan problem (two lectures) 1.3. Existence of a classical solution of the one-phase Stefan problem (two lectures) 1.4. Asymptotic behavior (one lecture) 2. Variational Inequalities (four lectures) 2.1. Variational approach to the one-phase Stefan problem 2.2. Some properties of the free boundary of the Stefan problem 3. Phase field models: transition layer to sharp interface (three lectures) 4. Numerical solutions (one lecture) References: [1] Avener Friedman, "Variational Principles and Free-Boundary Problems", John Wiley and Sons, New York, 1982. [2] 河原田秀夫, 「自由境界問題」, 東京大学出版会,1989. [3] David Kinderlehrer and Guido Stampacchia, "An Introduction to Variational Inequalities and Their Applications", Academic Press, New York, 1980. [4] Anvarbek M. Meirmanov, "The Stefan Problem", Walter de Gruyter, Berlin/New York, 1992. Evaluation: homework projects Other Remarks: Office hours: after the lecture